Effect of dispersion stability on the deposition of citrate-capped silver nanoparticles in natural soils.

نویسندگان

  • Soomin Park
  • Esther Hehsun Kim
  • Moonjung Eoel
  • Hyeon Don Song
  • Suseung Lee
  • Jin-Kyu Roh
  • Byoung-Cheun Lee
  • Younghun Kim
  • Jongheop Yi
چکیده

Although little is known about the behavior of engineered nanomaterials after exposure to terrestrial areas, recent studies indicate that silver nanoparticles (AgNPs) can perturb the soil environment due to their biocidal and catalytic properties. The fundamental evaluation of the environmental fate of AgNPs would be a significant step toward a comprehensive understanding of the harmful effects of such particles on ecosystems. Therefore, from an eco-toxicological perspective, the estimation of AgNP behavior in soil should be investigated. Among the various environmental characteristics, the deposition of nanoparticles in the soil constitute is a critical step in their migration into surface or groundwater and interaction with organisms, which is determined by the stability of aqueous dispersions in a soil micro-environment. In the present study, we observed the aggregation and deposition of AgNPs to natural soil surfaces by comparing the partitioning of AgNPs in a soil/water interface with that of Ag+ ion. Both AgNPs and Ag+ ion were selectively quantified by means of inductively coupled plasma (ICP) spectrometry and an ion-selective electrode (ISE). We interpreted the partitioning of AgNPs and Ag+ ion using the Freundlich isotherm and the findings indicate that AgNPs with reduced dispersion stability in a soil micro-environment were aggregated and deposited on the surface of natural soil. This study provides a fundamental basis for understanding the deposition of AgNPs, which will enable their accumulation and mobility in a soil environment to be predicted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles

Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles were studied. The effect of size on the properties, by capping silver (Ag) and gold (Au) nanoparticles by thiosemicarbazide (TSC) was investigated. The nanoparticles were synthesized by chemical reduction method. The structural formation, surface morphology, phase stabi...

متن کامل

Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles

Room temperature dielectric and antibacterial behavior of thiosemicarbazide capped low dimension Silver and Gold nanoparticles were studied. The effect of size on the properties, by capping silver (Ag) and gold (Au) nanoparticles by thiosemicarbazide (TSC) was investigated. The nanoparticles were synthesized by chemical reduction method. The structural formation, surface morphology, phase stabi...

متن کامل

Chitosan Capped Silver Nanoparticles as Colorimetric Sensor for the Determination of Iron(III)

A selective, simple and low-cost method for the colorimetric determination of Fe3+ ions based on chitosan capped silver nanoparticles (Chit-AgNPs) was presented. Chitosan is a cationic polyelectrolyte and possesses amino and hydroxy groups which make it widely used as a capping agent for Ag NPs. The synthesized chitosan capped silver nanoparticles with excellent colloidal stability were charact...

متن کامل

Controllable Synthesis of Silver Nanoparticles Using Citrate as Complexing Agent: Characterization of Nanopartciles and Effect of pH on Size and Crystallinity

A method for the controllable synthesis of silver nanoparticles based on a complexing agent method was developed. Citric acid was used as a complexing agent. The effect of pH (1.6 to 5.17) on the size and net height (as obtained from XRD analyses) of silver nanoparticles was investigated. The nanoparticles (10 to 40 nm) were characterized using XRD, TEM, SEM, EDX, UV-Vis spectrosco...

متن کامل

Hydroxyl capped silver-gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus

Objective(s):   Metal nanoparticles (NPs) offer a wide variety of potential applications in pharmaceutical sciences due to the unique advances in nanotechnology research. In this work, bimetal Ag-Au alloy NPs were prepared and their combinations with other antibiotics were tested against Staphylococcus aureus.   Materials and Methods: Firstly, Ag-Au alloy NPs with Au/Ag molar ratio of 1:1 was f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2013